Rank-constrained optimization and its applications
نویسندگان
چکیده
This paper investigates an iterative approach to solve the general rank-constrained optimization problems (RCOPs) defined to optimize a convex objective function subject to a set of convex constraints and rank constraints on unknown rectangular matrices. In addition, rank minimization problems (RMPs) are introduced and equivalently transformed into RCOPs by introducing a quadratic matrix equality constraint. The rank function is discontinuous and nonconvex, thus the general RCOPs are classified as NP-hard in most of the cases. An iterative rank minimization (IRM) method, with convex formulation at each iteration, is proposed to gradually approach the constrained rank. The proposed IRM method aims at solving RCOPs with rank inequalities constrained by upper or lower bounds, as well as rank equality constraints. Proof of the convergence to a local minimizer with at least a sublinear convergence rate is provided. Four representative applications of RCOPs and RMPs, including system identification, output feedback stabilization, and structured H2 controller design problems, are presented with comparative simulation results to verify the feasibility and improved performance of the proposed IRM method.
منابع مشابه
An Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملError bounds for rank constrained optimization problems
This paper is concerned with the rank constrained optimization problem whose feasible set is the intersection of the rank constraint set R = { X ∈ X | rank(X) ≤ κ } and a closed convex set Ω. We establish the local (global) Lipschitzian type error bounds for estimating the distance from any X ∈ Ω (X ∈ X) to the feasible set and the solution set, respectively, under the calmness of a multifuncti...
متن کاملA Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement
A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...
متن کاملOn the hybrid conjugate gradient method for solving fuzzy optimization problem
In this paper we consider a constrained optimization problem where the objectives are fuzzy functions (fuzzy-valued functions). Fuzzy constrained Optimization (FO) problem plays an important role in many fields, including mathematics, engineering, statistics and so on. In the other side, in the real situations, it is important to know how may obtain its numerical solution of a given interesting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 82 شماره
صفحات -
تاریخ انتشار 2017